Tau ID Status Report

Tasks and People

- Level 1
 - Andre, Yuri
- Level 2
 - Yuri, Bryan
- Level 3
 - Gustaaf
- PMCS
 - Bryan, Greg
- Reco
 - Qizhong
 - Leo, Dhiman, Marek (Multivariate stuff)
- Analysis
 - Qizhong, Leo, Naresh, Silke

Disclaimer

- Anything good in this talk should be credited to the people on the previous slide
- Any mistakes are my own fault, for preparing this talk in a hurry or as a result of my ignorance.
- These people are working hard and doing an excellent job
- More people participating would be more than welcome!

Recall Some Tau Basics

- ~85% decays are 1 prong
 - Ie. One charged particle plus any number of neutrals
- ~49% decays are 1 prong where the "prong" is a hadron
- 15% decays are 3 prong
- Tau reco is looking for the Hadronic decays
 - (lepton ID groups look for the leptons)
- So we look for narrow isolated jets as the basic tau objects

Level 1

- There are terms in the level 1 trigger list
- These are educated stabs at what should be done
- Some study has been made of tracking triggers, but Yuri has be pulled into hardware work
- A lot of work needs to be done

Level 2

- Again Yuri has done work, but has been pulled into hardware
- Bryan has begun to work on it

Example Plot

- •This plot is only meant to demonstrate that some work is underway
- •This work is in the earliest of stages and is hampered by a lack of tools

Level 3

- Level 3 effort is moving along well mainly by Gustaaf
- Recently has been trying the level 3 stiff tracker and it seems to work very well

TauReco Selection

- starts from a calorimeter cluster (CalCone07, $E_{\rm T}$ > 8 GeV)
- rms < 0.25
- *em fraction* < 0.95
- 1 \leq no. of matched tracks \leq 5 (within 0.2x0.2 window of cluster in η - ϕ space. $p_T \geq$ 0.5 GeV/c)
- NOTE: the point of this selection is not to get pure taus, but a reasonable set of candidates

Note Variables

• *RMS* (width of the jet):

$$RMS = \sqrt{\varphi_{width}^2 + \eta_{width}^2} < 0.25$$

$$- (\phi_i - \phi)^2 E_x^i$$

$$\phi_{width} = \sqrt{\sum \frac{(\phi_i - \phi)^2 E_T^i}{E_T}}$$

$$\eta_{width} = \sqrt{\sum \frac{(\eta_i - \eta)^2 E_T^i}{E_T}}$$

i is the cells above threshold (100 MeV)

Additional Useful Variable

* Profile:

$$P = \frac{E_{T1} + E_{T2}}{E_T}$$

 $\boldsymbol{E_{T1}}$ and $\boldsymbol{E_{T2}}$ are the two highest $\boldsymbol{E_{T}}$ towers

 $\boldsymbol{E_T}$ is the total $\boldsymbol{E_T}$

Tau jets have a larger value of P than QCD jets

Taus and Tracking

Tracking in taus is being studied by Silke

Efficiency

denominator:

number of generated taus that have:

- decayed hadronically
- visible ($v_{\tau} E_T$ subtracted) $E_T > 8 \text{ GeV}$
- at least one charged pion with $p_T > 0.5$ GeV/c
- at least one associated (dR < 0.2) calorimeter cluster (here dR uses the v_{τ} subtracted direction of the tau)

numerator:

number of generated taus in denominator that have an associated tau candidate after a specific set of cuts.

Definitions of some of the terms to be used

- dR = $\sqrt{\{(\Delta \eta)^2 + (\Delta \phi)^2\}}$ i.e. distance in η - ϕ space
- association: dR < 0.2
- visible 'stuff': tau neutrino 'stuff' subtracted. 'Stuff' can be p_T , η , etc..

Monte Carlo Samples for Efficiency Study

- pythia $Z \rightarrow \tau \tau$, QCD
- pmc02.01, preco03.07.00
- average 1.1 minbias

$Z\rightarrow \tau\tau$, pmc02.01, preco03.07.00, pythia, mb1.1av

$Z\rightarrow \tau\tau$, pmc02.01, preco03.07.00, pythia, mb1.1av

QCD $p_T > 20$, pmc02.01, preco03.07.00, pythia, mb1.1av

* Here the denominator is simply the total no. of calorimeter clusters.

QCD $p_T > 20$, pmc02.01, preco03.07.00, pythia, mb1.1av

Efficiencies

	$Z \rightarrow \tau \tau$	
generated	$3760(7520 \tau)$	
hadronic	4818	
kinematic cuts	4177	
associated cluster	3812	
Selection Cuts	Single Pass	Cumulative
rms < 0.25	90.3%	90.3%
emf < 0.95	97.3%	87.6%
$N(\text{track}) \ge 1$	78.9%	70.1%
N(track) < 5	99.97%	70.1%

* The 2nd - 4th rows show the no. of generated taus passing (cumulatively) each cut. The lower section shows the efficiencies. Single pass means that only that particular cut is applied.

Multivariate Tools

- In order to select a more pure sample of taus Multivariate techniques are used
- Recall that in Run I an H-Matrix was used
- That is being done again and is implemented in Taureco

Work on improving the Hmatrix is continuing, which is shown next

Training Sample

- Signal: $600 Z \rightarrow \tau\tau$ events with no associated jets
- Backgroud: 600 pythia QCD pt20
- pmc02.01, preco03.06.02
- Minbias: 1.1average
- $-1 \le \eta$ of cluster ≤ 1

New H-matrix Variables

- p/E : momentum of seed track (highest p_T matched track)/tot. energy of cluster
- track rms (within 0.4 cone of cluster)
- no. of tracks in 0.4 cone around cluster
- no. of tracks in 0.1-0.3 annulus around seed track (isolation)

Efficiencies by cutting on Fisher variable

pmc02.01, preco03.06.02, pythia, mb1.1av

Neural Network

- Recently a Neural Network has been tried
- The initial result was promising

NN variables

- E_EM1/Etotal
- E_EM4 /Etotal
- E 3x3 /Etotal
- E_5x5 /Etotal
- E hot2 /Etotal
- log10 (Etotal)
- This is a subset of the "standard" Hmatrix variables

Samples

- Samples used for training:
 - Signal: Z ->tau tau + 0 jet + 1.1 (avg) min-bias, 2000 events
 - Background: QCD (pT > 20 GeV) +1.1 (avg) minbias,
 1000 events
- Samples used for testing:
 - Z ->tau tau + 0 jet + 1.1 (avg) minbias, 600 events
 - QCD (p T > 20 GeV) + 1.1 (avg) min-bias, 1000 events
 - -Z->tautau+ 0 jet + 0 minbias, 1000 events
 - Single tau, pT = 50 GeV, 0 minbias, 2000events

The Neural Network

- *MLPfit* (MultiLayer Perceptrons)
 http://home.cern.ch/schwind/code.html
- Used in PAW with default parameter set
- 6 input nodes, 1 hidden layer with 12 nodes, 1 output node
- Method of minimization: line search (BFGS)
- Number of training iterations (epochs): 200

HMatrix cut

NN cut

Comparison

Clear Improvement

- Previous NN slides were made a few weeks ago.
- There was no optimization, just a first attempt at it, but it showed an improvement
- This week Dhiman showed new results with a different set of variables

Another set of NN variables

- E_EM3/Etotal
- E_EM4 /Etotal
- E_FH/Etotal
- RMS
- E_hot2 /Etotal
- log10 (Etotal) -1
- $log10(N_{0.5} + 1)$
- $(N_{0.5}-N_{0.2})/(N_{0.5}+N_{0.2}+1)$
- invariant mass sqrt((cal cluster E)**2 –P**2(tracks in 0.5 cone))

NN Output

NN Efficiency

Factor of 5 Improvement

Conclusions

- Tau reco is stable
 - But still there is work to be done,
 - Need person to take responsibility for tau's in the forward direction
- Multivariate analysis is promising and lots of work going on
- The Tau ID group does not suffer from a surplus of people.

